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Abstract
Virtual democracy is an approach to automating
decisions, by learning models of the preferences
of individual people, and, at runtime, aggregat-
ing the predicted preferences of those people on
the dilemma at hand. One of the key questions
is which aggregation method — or voting rule —
to use; we offer a novel statistical viewpoint that
provides guidance. Specifically, we seek voting
rules that are robust to prediction errors, in that
their output on people’s true preferences is likely
to coincide with their output on noisy estimates
thereof. We prove that the classic Borda count
rule is robust in this sense, whereas any voting
rule belonging to the wide family of pairwise-
majority consistent rules is not. Our empirical
results further support, and more precisely mea-
sure, the robustness of Borda count.

1. Introduction
One of the most basic ideas underlying democracy is that
complicated decisions can be made by asking a group of peo-
ple to vote on the alternatives at hand. As a decision-making
framework, this paradigm is versatile, because people can
express a sensible opinion about a wide range of issues.
One of its seemingly inherent shortcomings, though, is that
voters must take the time to cast a vote — hopefully an
informed one — every time a new dilemma arises.

But what if we could predict the preferences of voters —
instead of explicitly asking them each time — and then ag-
gregate those predicted preferences to arrive at a decision?
This is exactly the idea behind the work of Noothigattu et al.
(2018), who are motivated by the challenge of automating
ethical decisions. Specifically, their approach consists of
three1 steps: first, collect preferences from voters on exam-
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1Technically four, see Section 1.2.

ple dilemmas; second, learn models of their preferences,
which generalize to any (previously unseen) dilemma; and
third, at runtime, use those models to predict the voters’
preferences on the current dilemma, and aggregate the pre-
dicted preferences to reach a decision. The idea is that we
would ideally like to consult the voters on each decision,
but in order to automate those decisions we instead use the
models that we have learned as a proxy for the flesh and
blood voters. In other words, the models serve as virtual
voters, which is why we refer to this paradigm as virtual
democracy.

Since 2017, we have been building on this approach in a
collaboration with a Pittsburgh-based non-profit, 412 Food
Rescue, that provides on-demand food donation distribution
services. The goal is to design and deploy an algorithm
that would automatically make the decisions they most fre-
quently face: given an incoming food donation, which re-
cipient organization (such as a housing authority or food
pantry) should receive it? The voters in our implementation
are stakeholders: donors, recipients, volunteers (who pick
up the food from the donor and deliver it to the recipient),
and employees. We have collected roughly 100 pairwise
comparisons from each voter, where in each comparison,
the voter is provided information about the type of donation,
as well as seven relevant features of the two alternatives
that are being compared, e.g., the distance between donor
and recipient, and when the recipient last received a do-
nation. Using this data, we have learned a model of the
preferences of each voter, which allows us to predict the
voter’s preference ranking over hundreds of recipients. And
given a predicted ranking for each voter, we map them into
a ranking over the alternatives by applying a voting rule.

While this implementation sounds simple enough, the choice
of voting rule can have a major impact on the efficacy of
the system. In fact, the question of which voting rule to
employ is one of the central questions in computational so-
cial choice (Brandt et al., 2016), and in social choice theory
more broadly. A long tradition of impossibility results estab-
lishes that there are no perfect voting rules (Arrow, 1951),
so the answer, such as it is, is often context-dependent.

The central premise of this paper is that, in the context of
virtual democracy, certain statistical considerations should
guide the choice of voting rule. Indeed, the voting rule
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inherently operates on noisy predictions of the voters’ true
preferences, yet one might hope that it would still output
the same ranking as it would in the ‘real’ election based on
the voters’ true preferences (after all, this is the ideal that
virtual democracy is trying to approximate). Our research
question, therefore, is

... which voting rules have the property that their
output on the true preferences is likely to coincide
with their output on noisy estimates thereof?

1.1. Our Approach and Results

Our technical approach relies on the observation that the
classic Mallows (1957) model is an unusually good fit with
our problem. Typically the Mallows model describes situ-
ations where there is a true ranking of the alternatives σ∗.
The probability that voter i would be associated with a given
ranking σi decreases exponentially with the number of pairs
of alternatives on which σi and σ∗ disagree (formally known
as the Kendall tau distance). The model is parameterized
by a parameter φ ∈ (0, 1], which is directly related to the
probability that σi agrees with σ∗ on any particular pair of al-
ternatives. This model is very well studied (see Section 1.2),
but, even in situations where there is a ground-truth ranking,
the Mallows model may not be an accurate representation
of reality (Mao et al., 2013). This observation has motivated
a body of work on generalized (Caragiannis et al., 2016;
2014) and adversarial (Procaccia et al., 2016; Benade et al.,
2017) noise models.

In our setting each voter has a (possibly different) true rank-
ing σ∗i , and the voter’s predicted ranking σi is drawn from a
Mallows distribution around σ∗i . Crucially, since the learn-
ing algorithm is, in fact, trying to predict pairwise compar-
isons (which make up the training set), the accuracy of the
predictor can be directly mapped to the Mallows parameter
φ. In other words, instead of making the classic assumption
that voters may fail to identify the ordering of some pairs of
alternatives with some probability, we are essentially observ-
ing that the machine learning algorithm fails to accurately
predict some of the pairwise comparisons, and mapping that
to a separate Mallows model for each voter. To drive the
point home, although the Mallows model is widely believed
to be a tenuous fit with previously studied applications (as
discussed earlier), it is intuitively the correct way of rea-
soning about the errors that arise when machine learning
algorithms predict rankings based on pairwise comparisons.
This insight is a key part of our conceptual contribution.

Our main positive result (Theorem 1) is that the classic
Borda count rule is robust to random noise, that is, it satis-
fies the property stated earlier, in a precise sense. Specifi-
cally, we establish an upper bound on the probability that
two alternatives are ranked differently when Borda count is
applied to the true preferences and to their noisy estimates.

The bound depends on the parameters of the model, as well
as on the difference between the scores of the two alterna-
tives in the true profile. On a high level, the theorem implies
that if one alternative is stronger than another by a moderate
margin under the true profile, Borda count is highly unlikely
to swap the two when given noisy preferences.

By contrast, we show that voting rules belonging to the wide
family of pairwise-majority consistent rules are not robust
(Theorem 2). We do this by constructing an instance where
there are significant margins between alternatives, yet any
voting rule belonging to this family is likely to flip a pair of
alternatives.

Finally, we provide empirical results that further strengthen
our case for the robustness of Borda count. Specifically,
these results suggest that the probability of making a mis-
take on a pair of alternatives decreases very quickly with
their average Borda score difference, independently of the
distribution used to generate the underlying true preferences.

1.2. Related Work

A number of recent papers have explored the idea of au-
tomating ethical decisions via machine learning and social
choice (Conitzer et al., 2017; Freedman et al., 2018; Nooth-
igattu et al., 2018). As mentioned above, our work builds
on the framework proposed by Noothigattu et al. (2018).
However, it is important to clarify why the questions we
explore here do not arise in their work. Since they deal
with 1.3 million voters, and split-second decisions (what
should a self-driving car do in an emergency?), they can-
not afford to consult the individual voter models at runtime.
Hence, they have added an additional summarization step,
whereby the individual voter models are summarized as a
single, concise model of societal preferences (with possibly
significant loss to accuracy). The structure of the summary
model is such that, for any given set of alternatives, almost
all reasonable voting rules agree on the outcome (this is
their main theoretical result), hence the choice of voting
rule is a nonissue under that particular implementation. By
contrast, our work is motivated by the food bank application
of the virtual democracy framework, where the number of
voters is small and speed is not of the essence, hence we
predict the preferences of individual voters at runtime.

It is worth mentioning that another prominent approach to
the allocation of food donations is based on (online) fair
division (Aleksandrov et al., 2015). That said, it is important
to emphasize that we study a general question about the
foundations of the virtual democracy paradigm, that is, our
work is not technically tied to any particular application.

Furthermore, the Mallows model underlies a large body of
work in computational social choice (Conitzer & Sandholm,
2005; Conitzer et al., 2009; Elkind et al., 2010; Elkind &
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Shah, 2014; Xia et al., 2010; Xia & Conitzer, 2011; Lu &
Boutilier, 2011; Procaccia et al., 2012; Jiang et al., 2014;
Azari Soufiani et al., 2012; 2013; 2014; Mao et al., 2013;
Caragiannis et al., 2014; 2016; Xia, 2016). Our model is
loosely related to that of Jiang et al. (2014), where individual
rankings are derived from a single ground truth ranking via
a Mallows model, and then a second Mallows model is
applied to obtain a noisy version of each voter’s ranking.
Our technical question is completely different from theirs.

Finally, there is a large body of work in social choice on
finding aggregation rules that satisfy axiomatic properties
that formally capture notions of fairness or efficiency (Ar-
row, 1951; Tennenholtz & Zohar, 2016). However, many
common axiomatic properties in social choice do not apply
to standard applications of virtual democracy, including the
autonomous vehicle domain of Noothigattu et al. (2018) and
our setting of food rescue, although they may be relevant in
other differently-constrained domains.

2. Preliminaries
We deal with a set of alternatives A such that |A| = m.
Preferences over A are represented via a ranking σ ∈ L,
where L = L(A) is the set of rankings (or permutations)
overA. We denote by σ(j) the alternative ranked in position
j in σ, where position 1 is the highest, and m the lowest.
We denote by σ−1(x) the position in which x ∈ A is ranked.
We use x �σ y to denote that x is preferred to y according
to σ, i.e., that σ−1(x) < σ−1(y).

The setting also includes a set of voters N = {1, . . . , n}.
Each voter i ∈ N is associated with a ranking σi ∈ L. The
preferences of N are represented as a preference profile
σ = (σ1, . . . , σn) ∈ Ln.

Given a preference profile σ ∈ Ln, we say that x ∈ A beats
y ∈ A in a pairwise comparison if a majority of voters
prefer x to y, that is,

|{i ∈ N : x �σi y}| > n/2.

The profile σ induces a weighted pairwise majority graph
Γ(σ), where we have a vertex for each alternative in A. For
each x ∈ A and y ∈ A \ {x}, there is an edge from x to y if
x beats y in a pairwise comparison; the weight on this edge
is

w(x,y)(σ) , |{i ∈ N : x �σi y}| − |{i ∈ N : y �σi x}|.

2.1. Voting Rules

A voting rule (formally known as a social welfare function)
is a function f : Ln → L, which receives a preference
profile as input, and returns a ‘consensus’ ranking of the
alternatives. We are especially interested in two families of
voting rules.

• Positional scoring rules. Each such rule is defined by a
score vector (α1, . . . , αm). Given a preference profile
σ, the score of alternative x is

n∑
i=1

ασ−1
i (x).

In words, each voter who ranks x in position p gives
αp points to x. The positional scoring rule returns
a ranking of the alternatives by non-increasing score,
with ties broken arbitrarily.

Our main positive result pertains to the classic Borda
count voting rule, which is the positional scoring rule
defined by the score vector (m − 1,m − 2, . . . , 0).
Denote the Borda count score of x ∈ A in σ ∈ Ln by

B(x,σ) ,
n∑
i=1

(
m− σ−1i (x)

)
.

• Pairwise-majority consistent (PMC) rules (Caragiannis
et al., 2016): These rules satisfy a fairly weak require-
ment that extends the classic notion of Condorcet con-
sistent social choice functions: Given a profile σ, if the
pairwise majority graph Γ(σ) = (A,E) is such that for
all x ∈ A, y ∈ A\{x}, either (x, y) ∈ E or (y, x) ∈ E
(i.e., it is a tournament), and, moreover, Γ is acyclic,
then f(σ) = τ for the unique ranking τ induced by
Γ(σ). Caragiannis et al. (2016) give many examples
of prominent voting rules that are PMC, including the
Kemeny rule, the Slater rule, the ranked pairs method,
Copeland’s method, and Schulze’s method.

2.2. The Mallows Model

Let the Kendall tau distance between two rankings σ, σ′ ∈ L
be

dKT(σ, σ′) , |{(x, y) ∈ A2 : x �σ y ∧ y �σ′ x}|.

In words, it is the number of pairs of alternatives on which
σ and σ′ disagree. For example, if σ = (a, b, c, d), and
σ′ = (a, c, d, b), then dKT(σ, σ′) = 2.

In the Mallows (1957) model, there is a ground truth ranking
σ?, which induces a probability distribution over perceived
rankings. Specifically, the probability of a ranking σ, given
the ground truth ranking σ?, is given by

Pr[σ | σ?] , φdKT(σ,σ
?)

Z
,

where φ ∈ (0, 1] is a parameter, and

Z ,
∑
σ′∈L

φdKT(σ
′,σ?)
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is a normalization constant. Note that for φ = 1 this is a
uniform distribution, whereas the probability of σ? goes to
1 as φ goes to 0. In the rest of the paper we assume that
φ < 1 for ease of exposition.

The repeated insertion model (Doignon et al., 2004) pro-
vides a convenient alternative way of reasoning about the
Mallows model. In the former model, alternatives are se-
quentially inserted into a partial ranking, until all alter-
natives have been ranked. Specifically, after alternatives
σ?(1), . . . , σ?(` − 1) have been inserted, the alternative
σ?(`) is inserted into the first position with probability P `1 ,
into the second with probability P `2 , and so on until P `` . The
following lemma connects the parameters of the random
insertion model with the parameter φ of the Mallows model.

Lemma 1 (Doignon et al. 2004). The Mallows model with
parameter φ ∈ (0, 1) induces the same distribution over
rankings as the random insertion model with parameters

P `i = φ`−i · 1− φ
1− φ`

.

We also require a lemma that gives bounds on the probability
that the position of an element x in a ranking sampled from
the Mallows model with parameter φ is far from its position
in the true ranking.

Lemma 2 (Braverman & Mossel 2009). Let σ be sampled
from a Mallows model with parameter φ and true ranking
σ?. Then for all alternatives x ∈ A and all s ≥ 0,

Pr[σ−1(x) ≤ (σ?)−1(x)− s] ≤ φs

1− φ

Pr[σ−1(x) ≥ (σ?)−1(x) + s] ≤ φs

1− φ
.

3. From Predictions to Mallows
In the virtual democracy framework, we are faced at runtime
with a dilemma that induces a set of alternatives A. For
example, when a food bank receives a donation, the set of
alternatives is the current set of recipient organizations, each
associated with information specific to the current donation,
such as the distance between the donor and the recipient.
Each voter i ∈ N has a ranking σ?i ∈ L over the given set
of alternatives; together these rankings comprise the true
preference profile σ?.

One of the novel components of this paper is the assumption
that, for each voter i ∈ N , we obtain a predicted ranking
σi drawn from a Mallows distribution with parameter φ and
true ranking σ?i . We emphasize that, in contrast to almost
all work on the Mallows Model, in our setting each voter
has her own true ranking.

Why is the Mallows Model a good choice here? Recall that
we are building preference models using pairwise compar-

isons as training data. When validating a model, we there-
fore test its accuracy on pairwise comparisons. And the
Mallows model itself, because it is defined via the Kendall
tau distance, is essentially determined by pairwise compar-
isons. In fact, the Mallows model (with parameter φ and true
ranking σ?) is equivalent to the following generative pro-
cess: for each pair of alternatives x and y such that x �σ? y,
x is preferred to y with probability 1/(1 + φ), and y is pre-
ferred to x with probability φ/(1 + φ); if this preference
relation corresponds to a ranking (i.e., it is transitive), return
that ranking, otherwise restart.

In more detail, let β be the average probability that we
predict a pairwise comparison correctly; in our food bank
implementation, β ≈ 0.9. Based on the preceding discus-
sion, one might be tempted to set β = 1/(1 + φ), i.e., set
β to be the probability of getting the relative ordering of
two adjacent alternatives correctly. While this is not un-
reasonable (and would have been very convenient for us),
for β ≈ 0.9 it would lead to extremely high probability
of correctly ranking alternatives that are, say, 30 positions
apart in the ground truth ranking. In order to moderate this
effect, we define another parameter κ ∈ {2, . . . ,m}, and
assume that our observed pairwise comparisons are between
σ?i (1) (the top-ranked alternative in the true ranking of i)
and σ?i (κ) (the alternative ranked in position κ). Formally,
the parameters β and κ are such that, for the ranking σi
sampled from a Mallows Model with φ and σ?i ,

Pr [σ?i (1) �σi σ?i (κ)] = β. (1)

It is worth noting that the implicit assumption that we are
observing comparisons between σ?i (1) and σ?i (κ) specifi-
cally is not meant to be realistic. Rather, the idea is that
there is some appropriate value of κ such that the observed
accuracy β can be related to the underlying Mallows model
through Equation (1), and, if we can establish results that
are general with respect to the choice of κ, they would carry
over to the real world.

Moving from conceptual issues to novel technical results,
we start with the following lemma, which expresses the
probability on the right hand side of Equation (1) in terms
of the Mallows parameter φ.

Lemma 3. Let σi be sampled from a Mallows Model with
parameter φ and true ranking σ?i . Then

Pr [σ?i (1) �σi σ?i (κ)] =
κ

1− φκ
− κ− 1

1− φκ−1
.

Equation (1) and Lemma 3 imply that

β =
κ

1− φκ
− κ− 1

1− φκ−1
,

but for subsequent results we need to express φ in terms of
β and κ, and it is unclear whether this can be done in closed
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form. Nevertheless, we are are able to derive a bound that
suffices for our purposes.

Lemma 4. For β and κ defined as in Equation (1), it holds
that

φ ≤
(

1− β
β

) 1
2κ−1

.

We relegate the proofs of both lemmas to the full version of
the paper. Note that Lemma 3 can be proved via a theorem
of Désir et al. (2018). Their theorem gives a closed form for
the probability that an alternative x is ranked first out of a
subset of alternatives S. This closed form is complex, and
requires quite a bit of additional notation, so we instead de-
rive the probability we are interested in, i.e., the probability
that σ?i (κ) is ranked above σ?i (1), from scratch.

4. Robustness of Borda Count
In this section, we rigorously establish the robustness of
Borda count to prediction error by showing that it satisfies a
formal version of the desired property stated in Section 1.
We do this by building on the machinery developed in Sec-
tion 3, as well as additional lemmas that we will state and
prove momentarily.

As we have already discussed, we do not have access to the
Mallows parameter φ. Instead, we can measure β, the prob-
ability that we correctly predict a pairwise comparison of
alternatives that are κ positions apart. On a very high level,
the theorem bounds the probability that the noisy Borda
ranking (based on the sampled profile) would disagree with
the true Borda ranking (based on the true profile) on a given
pair of alternatives.

Theorem 1. For any β > 1/2 and ε > 0 there exists a
universal constant T = T (β, ε) such that for all n,m, κ ∈
N such that n,m ≥ 2, for all s ≥ Tκ log κ, for all σ? ∈ Ln,
and for all x, x′ ∈ A such that 1

nB(x,σ?) ≥ 1
nB(x′,σ?)+

2s, it holds that

Pr

[
1

n
B(x,σ) >

1

n
B(x′,σ)

]
≥ 1− εn,

where the probability is taken over the sampling of σ.

Let us discuss the statement of the theorem. First, note that
the probability of mistake, εn, converges to 0 exponentially
fast as n grows, so the theorem immediately implies a “with
high probability” statement. Moreover, one can easily de-
rive such a statement with respect to all pairs of alternatives
(whose Borda scores are sufficiently separated) simultane-
ously, using a direct application of the union bound. Second,
it is intuitive that the separation in Borda scores has to de-
pend on κ, but it is encouraging (and, to us, surprising) that
this dependence is almost linear. In particular, even if κ
is almost linear in m, i.e., κ ∈ o(m/ logm), the theorem

implies that our noisy Borda ranking is highly unlikely to
make mistakes on pairs of alternatives whose average score
difference is linear in m.

Turning to the proof, we start by bounding the probability
that the Borda count score B(x,σ) of an alternative x ∈ A
in the observed profile σ is far from the Borda count score
B(x,σ?) in the true profile σ?. The proof of the following
lemma adapts that of a lemma of (Braverman & Mossel,
2009), which deals with average rank (instead of average
Borda count score), but in the case of a single true ranking,
i.e., σ?i = σ?j , for all i, j.

Lemma 5. For all alternatives x ∈ A, and all s ≥ 0

Pr

[
1

n
B(x,σ) ≤ 1

n
B(x,σ?)− s

]
≤
(

2e(n+ ns− 1)

n− 1
· φs

1− φ

)n
,

Pr

[
1

n
B(x,σ) ≥ 1

n
B(x,σ?) + s

]
≤
(

2e(n+ ns− 1)

n− 1
· φs

1− φ

)n
.

Proof. We prove the first inequality; the proof of the second
is analogous. Given a subset of voters S ⊆ N and a non-
negative vector b = (bi)i∈S ∈ N|S|, let ES,b be the event
that

B(x, σi) ≤ B(x, σ?i )− bi

for all voters i ∈ S, where we abuse notation by using

B(x, σi) , m− σ−1i (x)

to denote the Borda count score of alternative x in the rank-
ing σi. Lemma 2 implies that for all s ≥ 0,

Pr[B(x, σi) ≤ B(x, σ?i )− s] ≤ φs

1− φ
. (2)

Therefore,

Pr[ES,b] =
∏
i∈S

Pr[B(x, σi) ≤ B(x, σ?i )− bi]

≤
∏
i∈S

φbi

1− φ
=

φ
∑
i∈S bi

(1− φ)|S|
,

where the inequality follows from Equation (2).

Let E be the event that 1
nB(x,σ) ≤ 1

nB(x,σ?)−s. Notice
that

E ⊂
⋃

S⊆N,b∈N|S|:
∑
i∈S bi=ns

ES,b,

as there must exist a subset of voters who contribute suffi-
ciently to the difference in Borda scores. Moreover, for
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a fixed S, the number of vectors b ∈ N|S| such that∑
i∈S bi = ns is exactly

(|S|+ns−1
|S|−1

)
. Therefore,

Pr[E ] ≤
∑
S⊆N

∣∣∣∣∣
{
b ∈ N|S| :

n∑
i=1

bi = ns

}∣∣∣∣∣ · φns

(1− φ)|S|

≤ 2n ·
(
n+ ns− 1

n− 1

)
· φns

(1− φ)n

≤ 2n ·
(
e(n+ ns− 1)

n− 1

)n−1
·
(

φs

1− φ

)n
≤
(

2e(n+ ns− 1)

n− 1
· φs

1− φ

)n
,

where we used the fact that
(
n
t

)
≤ ( ent )t.

Using Lemma 5 we can bound, given the Mallows parameter
φ, the probability that two alternatives, whose Borda count
scores in the true profile σ? are sufficiently far apart, are
ranked by the Borda count voting rule in the correct order
(in the sampled profile σ).

Lemma 6. Let x, x′ ∈ A such that 1
nB(x,σ?) ≥

1
nB(x′,σ?) + 2s. Then

Pr

[
1

n
B(x,σ) >

1

n
B(x′,σ)

]
≥ 1− 2

(
2e(n+ ns− 1)

n− 1
· φs

1− φ

)n
.

Proof. Let E1 be the event that

1

n
B(x,σ) ≤ 1

n
B(x,σ?)− s,

and E2 be the event that

1

n
B(x′,σ) ≥ 1

n
B(x′,σ?) + s.

By Lemma 5 and a union bound we have that

Pr [E1 ∪ E2] ≤ 2

(
2e(n+ ns− 1)

n− 1
· φs

1− φ

)n
.

Next, notice that every time the Borda count scores of x and
x′ in the sampled preference profile are in the wrong order
(or tied), then at least one of E1, E2 occurred, i.e.,

Pr

[
1

n
B(x,σ) ≤ 1

n
B(x′,σ)

]
≤ Pr[E1 ∪ E2].

The lemma directly follows.

Recall that Lemma 4 gives an upper bound on φ as a function
of β and κ. Combining with Lemma 6, we can bound the
probability of getting the correct ranking as a function of β
and κ, and prove our main result.

Proof of Theorem 1. By Lemma 6,

Pr

[
1

n
B(x,σ) >

1

n
B(x′,σ)

]
≥ 1− 2

(
2e(n+ ns− 1)

n− 1
· φs

1− φ

)n
≥ 1− 2

(
4en

n− 1
· sφ

s

1− φ

)n
≥ 1− 2

(
8e · sφ

s

1− φ

)n
.

It suffices to give a bound on s such that

sφs

1− φ
≤ ε

16e
. (3)

By Lemma 4,

φ ≤
(

1− β
β

) 1
2κ−1

.

Since β > 1/2, there is a universal constant c > 1 such that
1−β
β = 1

c . Therefore,

sφs

1− φ
≤ s ·

(
1−β
β

) s
2κ−1

1−
(

1−β
β

) 1
2κ−1

= s · c−
s

2κ−1

1− c−
1

2κ−1

=
s

c
s

2κ−1 − c
s−1
2κ−1

=
s

c
s−1
2κ−1

(
c

1
2κ−1 − 1

)
≤ s

c
s−1
2κ−1 · c

1
2κ−1 (c−1)
c(2κ−1)

≤ c

c− 1
· s(2κ− 1)

c
s

2κ−1
,

where for the penultimate inequality we use the inequality

rz(z1/r − 1) > z1/r(z − 1),

which holds for all z, r ≥ 1,2 with z = c and r = 2κ− 1. It
is now easy to verify that there is a universal constant T > 0
such that if s ≥ Tκ log κ then Equation (3) holds.

2To see this, let

f(z, r) ,
rz(z1/r − 1)− z1/r(z − 1)

z

= (r − 1)z1/r + z1/r−1 − r.

Taking the partial derivative with respect to z, we have

∂

∂z
f(z, r) =

(r − 1)(z − 1)z1/r−2

r
,

which is clearly non-negative for z, r ≥ 1. Also, f(1, r) = 0. So,
we have shown that f(z, r) ≥ 0 for all z, r ≥ 1, which implies
the claim.
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It is important to note that it should be possible to extend
Theorem 1 to other positional scoring rules defined by a
score vector (α1, . . . , αm) where αj > αj+1 for all j =
1, . . . ,m− 1. However, Borda count is especially practical
and easy to explain (see Section 7 for more on this), which
is why we focus on it for our positive result.

5. Non-Robustness of PMC Rules
Theorem 1 shows that Borda count is robust against noisy
perturbations of the preference profile. It is natural to ask
whether ‘many’ voting rules satisfy a similar property. In
this section we answer this question in the negative, by
proving that any voting rule that belongs to the important
family of PMC rules is not robust in a similar sense.

Specifically, recall that under a PMC rule, when the
weighted pairwise majority graph is acyclic, the output
ranking is the topological ordering of the pairwise major-
ity graph. We show that there exist profiles in which the
pairwise majority graph is acyclic and all edge weights are
large, but, with high probability, the noisy profile also has
an acyclic pairwise majority graph which induces a differ-
ent ranking. This means that any PMC rule would return
different rankings when applied to the true profile and the
noisy profile.
Theorem 2. For all δ > 0, φ ∈ (0, 1), and m ∈ N such
that m ≥ 3, there exists n0 ∈ N such that for all n ≥ n0,
there exists a profile σ? ∈ Ln such that Γ(σ?) is acyclic
and all edges have weight Ω(n), but with probability at
least 1−δ Γ(σ) is acyclic and there is a pair of alternatives
on which the unique rankings induced by Γ(σ?) and Γ(σ)
disagree, where the probability is taken over the sampling
of σ.

It is instructive to contrast our positive result, Theorem 1,
with this negative result. On a very high level, the former
result asserts that “if Borda count says that the gaps between
alternatives are significant, then the alternatives will not flip
under Borda count,” whereas the latter says “even if a PMC
rule says that the gaps between alternatives are very signifi-
cant, some alternatives are likely to flip under that rule.” On
a technical level, a subtle difference is that Theorem 1 is
stated for β and κ, whereas Theorem 2 is stated directly for
φ. This actually strengthens the negative result, because a
constant β and κ ∈ ω(1) lead to φ = 1 − o(1), i.e., very
noisy distributions — and still the positive result of Theo-
rem 1 holds. By contrast, the negative result of Theorem 2
is true even when φ is constant, i.e., for settings that are not
nearly as noisy. That said, the two results are not directly
comparable, as Borda count and PMC rules deal with very
different notions of score or weight. Nevertheless, the take-
home message is that the notion of score that defines Borda
count is inherently more robust to random perturbations of
the preference profile.

The proof of Theorem 2 is rather technical, and appears in
the full version of the paper. In a nutshell, we construct a
preference profile σ? with αn voters whose preferences are
x? � x1 � · · · , and (1 − α)n voters whose preferences
are x1 � · · · � x?, for α > 1/2. This profile induces a
ranking where x? is first and x1 is second. However, it can
be seen that, in the sampled profile σ, many voters from
the first group would flip x? and x1, leading to a majority
who prefer x1 to x?. Furthermore, we prove the nontrivial
claim that Γ(σ) is likely to be acyclic (‘nontrivial’ because
it is unclear there would not be a cycle involving x?), which
completes the argument.

6. Empirical Results
In Section 4 we have established that Borda count is robust
to prediction error. However, our positive theoretical result,
Theorem 1, only provides asymptotic guarantees. In this sec-
tion, we evaluate the performance of Borda count on profiles
of size that is more representative of real-world instances.
For our evaluation metric, we consider the probability of the
rule flipping alternatives when aggregating noisy rankings
against their difference in Borda score in the underlying true
profile.

All of our code is open-source and can be found at
https://github.com/akahng/VirtualDemocracy-ICML2019.

6.1. Methodology

Given n voters, m alternatives, a Mallows parameter φ ∈
(0, 1), and a probability p ∈ [0, 1], we generate a true profile
σ? = (σ?1 , . . . , σ

?
n) from a mixture of Mallows models.

Specifically, each ranking is drawn with probability p from
a Mallows model with base ranking x1 � x2 � · · · � xm
and parameter φ, and with probability 1−p from a Mallows
model with base ranking xm � xm−1 � · · · � x1 and
parameter φ.

We then repeatedly generate noisy profiles σ =
(σ1, . . . , σn) where each σi is generated by a Mallows
model centered at σ?i with parameter φ. For every pair
of alternatives (xi, xj) such that B(xi,σ

?) > B(xj ,σ
?)

— that is, xi beat xj when Borda count was applied to the
true profile — we calculate the percentage of noisy pro-
files that flipped the order of xi and xj , i.e., those where
B(xj ,σ) > B(xi,σ). Based on the true difference in
Borda scores B(xi,σ

?) − B(xj ,σ
?), we place this data

point in the appropriate bucket, where the width of each
bucket corresponds to an average Borda score difference of
1. This way we can relate the Borda score difference to the
probability of making a pairwise prediction error. Note that
starting from a mixture of ‘opposite’ ranking models allows
us to vary the distribution over score differences in σ? by
varying p.

https://github.com/akahng/VirtualDemocracy-ICML2019
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(a) φ = 0.4
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(b) φ = 0.5
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(c) φ = 0.6
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(d) φ = 0.7
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(e) φ = 0.8
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(f) φ = 0.9

Figure 1. p = 1 mixture of Mallows, n = 100 voters, m = 40 alternatives

6.2. Results

Throughout our experiments, we let n = 100, m = 40,
φ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, and p ∈
{1, 0.7, 0.5}. Our results for p = 1, shown in Figure 1,
plot the average probability of flipping the order of alterna-
tives as a function of the difference in average Borda scores
of the alternatives, where comparisons are bucketed by the
difference in average Borda score. For φ ∈ {0.1, 0.2, 0.3},
the observed probability of flipping any two alternatives,
regardless of average Borda score difference, is 0; i.e., there
are no mistakes.

At a high level, error rate decreases with true average Borda
score distance in all experiments. Note that the maximum
observed error rate increases with the Mallows parameter φ,
which is intuitive because higher values of φ imply noisier
(more uniformly random) rankings, so the probability of
swapping alternatives should increase. However, for all
values of φ and under all methods of generating profiles, the
probability of making errors quickly decreases with average
Borda score difference in the true profile.

Similar plots for p = 0.7 and p = 0.5 are included in the
full version of the paper; these plots support the observation
that the probability of making a mistake depends on the
average Borda score difference, and not on the particular
methods used to sample the underlying true profile.

7. Discussion
Our theoretical and empirical results identify Borda count
as an especially attractive voting rule for virtual democracy,
from a statistical viewpoint. However, Borda count is also
compelling in terms of usability and explainability.

In more detail, in our implemented donor-recipient match-
ing system, clicking on a recommended alternative displays
an explanation for why it was ranked highly by Borda count,
which consists of two components. First, we show the al-
ternative’s average position in the predicted preferences of
each of the four stakeholder groups. Note that this infor-
mation determines the Borda score of the alternative, given
the weight of each stakeholder group.3 Second — this is
the more novel component — we show specific features
in which the recommended alternative stands out. This is
interesting because classic social choice theory does not
have features for alternatives, and we are able to give this
type of explanation precisely because our alternatives are
represented as vectors of features (which is crucial for the
application of learning-to-rank algorithms).

Based on the results presented in this paper, as well as these
additional insights, we use Borda count in our implemented
virtual-democracy-based system.

3These weights were decided by the stakeholders themselves.
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