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ABSTRACT
People in work-separated families have been heavily relying on
cutting-edge face-to-face communication services. Despite their
ease of use and ubiquitous availability, experiences in living to-
gether are still far incomparable to those through remote face-to-
face communication. We envision that enabling a remote person
to be spatially superposed in one’s living space would be a break-
through to catalyze pseudo living-together interactivity. We pro-
pose HomeMeld, a zero-hassle self-mobile robotic system serving as
a co-present avatar to create a persistent illusion of living together
for those who are involuntarily living apart. The key challenges are
1) continuous spatial mapping between two heterogeneous floor
plans and 2) navigating the robotic avatar to reflect the other’s pres-
ence in real time under the limited maneuverability of the robot. We
devise a notion of functionally equivalent location and orientation
to translate a person’s presence into another in a heterogeneous
floor plan. We also develop predictive path warping to seamlessly
synchronize the presence of the other. We conducted extensive
experiments and deployment studies with real participants.

CCS CONCEPTS
•Human-centered computing→Mixed / augmented reality;
Ubiquitous andmobile computing systems and tools; •Com-
puter systems organization → Robotics;
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Figure 1: HomeMeld 1 enables family members to naturally
present at two heterogeneous homes at the same time.

1 INTRODUCTION
Think of a work-separated family. Two partners who have been
appointed to different schools, or a military officer serving at a
base far from her husband and children. It is unfortunate but yet
they can manage to see and talk to each other every day, thanks to
cutting-edge mobile, networking, and multimedia technologies.

Imagine a fictional system that superposes two distant homes and
the people therein. It provides real-time self-mobile avatars directly
in the physical space of both homes; e.g., the person at Home A is
present in Home B through her avatar, and vice versa. The avatar
could be a hologram or a humanoid robot looking, moving around,
and acting exactly in the same way as she is doing at her remote
home, despite all the spatial and interior differences between those
homes. For example, a military officer enters her quarters after
work; she sees his young son’s avatar running to her at the porch,

1Our video is available at: https://goo.gl/7xJwJj
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welcoming himwith open arms. At the same time, the little boy sees
his mother’s avatar entering his porch and runs to her. They dine
together; each of them is dining at one’s own table with the other’s
avatar dining at the same table. They sit on the couch together, talk
and laugh, and she sees him falling asleep next to her.

This fictional system highlights an avatar intelligently mimick-
ing the remote person in real-time. The avatar does not simply
copy every inch of one’s activity and location as-is; it relocates and
adjusts itself to make it look perfectly natural in different home
environments. This system enables a distant couple to be mutu-
ally co-present in each other’s living space, with all activities and
movements intelligently mirrored to each other. Such co-presence
brings many pseudo living-together experiences incomparable to
those of today’s telecommunication. They naturally perceive each
other’s live presence and context directly in one’s living space. It
could be even a peripheral perception [48] with little cognitive cost.
Making an interaction is hassle-free, with no interference. Also,
small interactions may naturally blend with other on-site activities
such as cooking or household chores, which are often discouraged
in remote conversation. In essence, they may communicate over a
distance, but they commune together when being co-present.

Realizing such a system opens up a vast spectrum of technical
and design challenges. In this paper, we build an initial prototype,
HomeMeld, a zero-hassle self-mobile robotic system serving as a
real-time, co-present avatar to create a persistent illusion of living
together. HomeMeld is built on top of a commercial telepresence
robot hardware [2] and a CNN-based computer vision technique,
letting the person be device-free at all times.

Among many questions along the path towards this ambitious
dream, HomeMeld focuses on intelligent simultaneous positioning
of the avatar from a human point-of-view. Figure 1 shows two
scenes of HomeMeld operating at two distant homes. The first
scene shows the wife’s home (Figure 1a) and the husband’s home
(Figure 1b) at the same time. The wife is sitting at her desk and
talking to her husband’s avatar standing against her kitchen bar and
facing her. Conversely, the husband is standing against his kitchen
bar and talking to his wife’s avatar located at his desk and oriented
towards him. The second scene shows those two homes a few
moments later (Figure 1c and 1d, respectively). The wife has moved
to her couch, calling her husband’s avatar that has turned around
towards her kitchen bar. In the husband’s home, her avatar has
moved autonomously to his couch, as she has, and calls him from
behind. Having the other person’s presence at such an equivalent
location is important because it is an intuitive indicator to his/her
context, for example, she may be busy with her work and he may
feel like drinking something.

As illustrated above, HomeMeld synchronizes the avatar’s pres-
ence with the remote person in terms of both space and time. We
highlight that, given an arbitrary location/orientation in Home A,
defining the human-perceived equivalent location/orientation in
Home B is a fuzzy problem susceptible to uncertainty, subjectivity,
and dependency on individual home environments.

We address this problem through a two-tiered approach. We be-
gin with establishing human insights; we collect extensive, human-
labeled anecdotal point-to-point mappings between heterogeneous
floor plans. This data set revealed interesting trends of varying

human-perceived equivalence between in-home locations, depend-
ing on a location’s proximity to household objects with inherent
functions. Then we leverage those trends to derive a generalized
computational model that evaluates the functionally equivalent lo-
cation in a home for a given location in another home.

Our model of functionally equivalent location synchronizes the
avatar’s presence in terms of space, but not necessarily in terms
of time. Our model translates a person’s real-time path in Home A
into a sequence of functionally equivalent locations in Home B. It
does not necessarily ensure the same traveling distance, resulting
in the avatar lagging behind. We devise predictive path warping to
ensure the user experience of same-time co-presence.

To continuously detect a device-free person’s in-home loca-
tion/orientation, HomeMeld takes a single-camera vision approach.
We instrument a room with a ceiling-mounted 180° camera in favor
of obstruction-free, accurate localization. This design choice led us
to train a custom CNN model localizing a person and detecting her
orientation viewed from a very unusual angle, at every possible
location and orientation in various homes. We devise unique strate-
gies to collect, augment, and synthesize the data set to mitigate the
data-hungry challenges of training a custom-purposed CNN model.

Although our initial prototype is based on a simplified robotic
hardware that is unable to mimic every possible human motion, the
key features of HomeMeld could be seamlessly extended towards
higher fidelity mimicry as more sophisticated hardware with higher
degrees-of-freedom such as a humanoid robot, as well as higher-
precision indoor human activity sensing [37] become available.

Our contributions are threefold. First, we envision a physical
co-presence service superposing two distant, heterogeneous liv-
ing spaces through self-mobile avatars. Second, we build a device-
free working prototype, through which we address self-navigating
telepresence robots featuring human-perceived spatio-temporal
equivalence across heterogeneous homes. Third, we conduct small-
scale deployments with real participants suffering from involuntary
distant living and discuss their experiences with HomeMeld.

2 PRESENCE OVER A LONG DISTANCE
Needless to say, it is widely agreed that living together is crucial
for people in a family-like relation. Formally, a phenomenological
study [54] revealed the prominent elements representing the expe-
rience of family-like intimacy. Those include presence—noticeable
existence of a person with another, time continuity—shared experi-
ences persisting over time such as a whole day, boundary-free—no
boundaries between them in both physical and psychological ways,
and nonverbal communications. Not surprisingly, those are the priv-
ileges naturally granted when living together.

The growing trends of globalization and work-force mobility are
impacting the traditional living-together models. In 2006, a census
result reports that 3.6 million married Americans live in a different
city from their spouses due to work, which is a 53% increase since
2003 [5]. Those involuntarily living apart adopt computer-mediated
communication technologies to see and talk to each other, share
a moment, and feel the other’s existence, yet which offers partial,
limited coverage of the aforementioned elements.

Real-time face-to-face communication services, such as a video
chat, are a predominant tool that conveys not only words but also
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some nonverbal cues [34, 44]. Although some couples use a video
chat to improvise a narrow-band life-sharing channel at home [29],
those are generally not compatible with long-lasting, relaxed expe-
rience sharing as at home; a video chat is often presumed attention-
demanding and preemptive of other in-home activities.

Experimental technologies have been proposed to enrich fam-
ily interaction by sharing a task-specific tangible activity [30, 62]
or augment a conversation channel with additional sensory stim-
uli [28, 46]. Those exhibit a specific form of presence at a certain
moment, but are not designed to provide a continuous, boundary-
free remote presence. Alternatively, a large body of work has ex-
plored providing a feeling of ambient presence of the other per-
son [17, 18, 31, 32], which allows continuous signaling of one’s
presence, yet through a very low-fidelity channel hardly helping
meaningful communication.

Telepresence, first coined by Marvin Minsky [41], aims for a more
holistic presence of a remote person. In light of this, a life-sized real-
time projection provides a long-lasting, boundary-free experience
of telepresence in a device-free augmented reality style [49]. But
the stationary instrumentation of a projector renders the other
person immobile. While wearable augmented reality devices could
let free the remote person, keeping the wearable device on the
face hampers long duration usage, making the user feel not as
comfortable as being at home. A fundamental shortcoming is that a
virtual remote person and a physical local person may pass through
each other. Such events, which are implausible in the real world,
cause disruption in the immersive presence experience [33].

Telepresence through a robotic agent was originally explored
for situated collaboration between remote workplaces [47]. Such
robotic hardware has evolved and has become commercially avail-
able at an affordable cost [1, 2], which are essentially a video chat
terminal on a movable platform piloted by a remote user. Experi-
ments are in progress to broaden its penetration, e.g., in academic
conferences [45], companies [36], and very recently in homes [63].

Robotic telepresence has been found to be useful for strength-
ening a sense of presence between remote people, mainly because
of its ability to move around [36]. But we stress that the percep-
tion of a remote person’s presence is not mutual. A robot must
be controlled by a remote pilot, who stays on the interface. While
the other person who is mingling with the robot is free to move
anywhere and do anything in his space, the piloting person is left
effectively immobile under high cognitive loads of both piloting
and video-chatting tasks. Furthermore, if we imagine a symmetric
setup where each person pilots a robot in the other person’s home
and vice versa, it would be pointless as both become immobile and
their experiences would be no better than a stationary video chat.

We argue that such asymmetric experiences and requirements
of humans in the loop are fundamental hurdles against embedding
natural, hassle-free, long-lasting co-presence using a robotic agent
within distant people’s unconstrained life in their living spaces.

3 DESIGN STUDY
In this section, we explain the current practices and challenges
found from real work-separated families, through which we have es-
tablished the key design requirements of HomeMeld. We conducted
a preliminary user study that included one-on-one semi-structured

Table 1: Participant demographics
Gender Age Occupation Period Remark

M 27 Graduate student 1 year
M 29 Army surgeon 6 months MarriedF 31 Dentist
M 26 Graduate student 1 year
F 29 Teacher 10 months
M 33 Researcher 4 years MarriedF 35 Post-doc
M 30 Post-doc 2 years
M 32 Graduate student 3 years
M 36 Researcher 3 months
M 29 Graduate student 3 years MarriedF 28 Engineer
F 38 Professor 3 years
M 31 Researcher 6 months

interviews and a design workshop. First, we investigate current
ways and limitations of communication between remote family
members, then distill essential design considerations to realize the
fictional system for providing a sense of living together.

3.1 One-on-one Semi-structured Interviews
We were interested in those who are work-separated from fam-
ily or distant couples. We recruited 14 participants for one-hour
one-on-one semi-structured interviews (see Table 1) from the au-
thors’ online social networks in both the United States and South
Korea, and from online communities in a public research university
in South Korea. Each participant was rewarded a $10 gift certifi-
cate. Questions explored in the interviews were: 1) communication
channels that they use to interact with remote family members, 2)
limitations of current ways of remote communication, 3) moments
that they feel like being together with the other family member,
and 4) potential ways to provide an illusion of living together.
Voice/video chatting: Most participants used voice/video chat-
ting as a main communication channel, however, they responded
that pre-arrangement is a significant inconvenience for two rea-
sons. First, it is hard to communicate upon an unexpected event at
the agreed time (e.g., delayed schedule, connection problem, etc.)
Second, it requires waiting until both sides are available. It often
hampers vivid interaction, resulting in a smaller amount of time for
interaction, and losing chances to share the experience just-in-time.
Such hardship in arranging daily conversation often makes them
feel it obligatory, even on a day that is tricky to talk.

Participants also reported that they sometimes feel even more
lonely after the end of the communication. It deeply reminds them
of needs for a feeling of continuous togetherness.
Face on the camera, eyes on the screen: Participants find it
hard to video chat and do other activities at the same time because
they consider it a norm that they should keep eyes on the other
person over the camera. All participants agreed that voice/video
chatting requires a higher attention than co-located conversation.
Even they feel pressured to keep talking because a momentary
pause during remote conversation feels awkward (also supported
in literature [39]) or might be a signal to terminate the conversation.
Serendipitious interaction when living together: Participants
reported advantages of co-located family conversation. Notably, it
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Figure 2: HomeMeld system overview, instrumenting each homewith a 180° camera, a telepresence robot, and a server module

is so easy to perceive even a subtle context of the other and initiate
a relevant chat. For example, a wife starts a casual conversation
with asking her husband what he is going to cook when she sees
him going to the kitchen, hears a simmering sound, or smells a
spicy flavor. Some participants said that knowing the other’s con-
text helps to blend their chat while doing routine activities (e.g.,
dining or doing household chores), which catalyzes a serendipitous
interaction to naturally stem from what they are doing now. Also,
they feel it acceptable to look elsewhere from time to time while
casually chatting, such at a boiling pan or floor being mopped.

3.2 Design Workshop
We conducted a two-hour focus group discussion to clarify key
design considerations to realize our target system. We recruited six
participants who experienced both living together with their fami-
lies and living apart from them. Three of them are married couples
who live apart, and the others are separated from their parents and
live alone. Each participant received a $20 gift certificate. Below we
list the key desired properties that we identified.
Device free: They discussed the inconvenience of voice and video
calls. In particular, they pointed out that the preparation process
involving a computer or a smartphone for remote chatting was
cumbersome, e.g., setting up the equipment, and difficulties to go
along with housework such as washing dishes. Most participants
agreed that using or wearing the devices every time is a major
inconvenience and hinders intimate sharing of everyday lives.
Physical occupancy:Most participants said the importance of a
substantial embodiment to realize such a system. With holograms
or VR/AR, the avatars pass through the user’s body and untouched,
which may be a factor of diminishing presence. Previous research
claims that the illusion of reality with a virtual object can be shat-
tered when their hands pass through it [9].

They stressed that physically occupying space is important in
giving a sense of co-presence. When real people are together, they
have to wait or move around to avoid bumping into the other people
in their way. Once they know the other person is a penetrable
simulation, they will get used to passing through the other person,
developing thoughts that the other person is ignorable.
Location/orientation: Some participants claimed a key feature of
knowing what a remote family member is doing is often related

to where she is at that home. For example, if the system indicates
the other person’s location in front of the refrigerator, a user easily
infers that the other person may be looking for food or drinks in
the refrigerator. Interestingly, some participants expected that a
location where the other person is staying even for a moment may
be a stronger indicator of her activity, than the passing-by locations
along a continuous path when the other person is moving.

They also discussed the orientation of the other person. They
responded that whether the other person is looking at them or not
is quite important because it indicates her willingness to interact.
They also said that what the other person is looking at can be an
additional clue indicating her current or near-future activity.

Participants demanded to be able to recognize the other family
member’s context in amost intuitive form; for example, to recognize
the other person’s location, the most intuitive form would be an
in-situ visual indicator, rather than textual or auditory description.

4 SYSTEM OVERVIEW
We designed HomeMeld, a self-mobile robotic mutual co-presence
system requiring zero control from users and zero mobile devices.
Figure 2 shows an architectural overview. It consists of a ceiling
mounted camera, a telepresence robot, and a server module for
each home, which all cooperate to realize the system.

A ceiling mounted 360° camera is installed at the center of the tar-
get living space. One hemisphere of the camera is facing downward,
obtaining a 180° field of view (FoV) of the room. It continuously
streams the video of the living space to the server. The server is
comprised of two modules, each includes multiple components,
which are responsible for a home and the person living therein. The
two modules work almost independently, except for the exchange
of human/avatar information between two homes.

For ease of explanation, we name the two people Alice and Bob
respectively for the rest of the paper. In HomeA, Alice lives with
BobAvatar and Bob lives in HomeB with AliceAvatar . The system
settings and operations described herein are symmetric to both
Alice and Bob, although we explain only one-sided operations.

In HomeA, the avatar detector finds the location and orienta-
tion of BobAvatar from the video feed, by placing a ArUco vision
marker [22] on top of the avatars and applying trigonometry. The
marker is sometimes not detected at peripheral area of the FoV
due to spherical distortion. We interpolate the location using local
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encoders of the robot’s wheel. Once the marker is detected again,
we correct accumulated errors which usually do not exceed 15 cm.

From the same video feed, the human detector extracts the lo-
cation and orientation of Alice. Unlike the avatar, Alice, who is
supposed to be device-free, has no vision marker. Our design choice
is to use a convolutional neural network (CNN) model to obtain
the location and orientation of humans. We trained a custom CNN
model with our own data set because, to our knowledge, a data set
of labeled top-view images of people and a model fit for it were not
publicly available. We will discuss this issue in §7.

Once the location/orientation of the Bobavatar and Alice are cap-
tured, the system is ready to decide how to move the AliceAvatar .
Translating the location/orientation from a floor plan to another
is not trivial. We introduced the notion of functionally equivalent
location/orientation to tackle this problem. The household objects
in HomeA and the location of BobAvatar are combined to form
functional objects of HomeA, and the mapper translates the loca-
tion/orientation of Alice in relation to those functional objects. For
this, the location/orientation information of Alice and BobAvatar
inHomeA is sent toModuleB , where the controller forAliceAvatar
is located at. This is the only communication between the two
modules of the server. §5 describes the mapper in more details.

The server module applies an optimization to predict a moving
person’s likely destination upon the changes of her location and
orientation. With enough confidence about Alice’s destination, it al-
ters Alice’s location to the predicted destination so thatAliceAvatar
can move more promptly. §6 discusses the destination predictor.

Lastly, the avatar controller controls the robotic avatar in two
ways: 1) It plans a path forAliceAvatar inHomeB towards the func-
tionally equivalent location of Alice’s predicted destination. The
path gets updated on new coordinates of AliceAvatar . 2) Impor-
tantly, the path planning does not necessarily respect every interim
location of Alice to be mapped. It respects only a few locations of
Alice of higher significance in terms of functional location, and
makes AliceAvatar take a shortest-time curve between such loca-
tions to minimize the travel time lag from Alice. The local driver
running at AliceAvatar interpolates the intermittent route updates
from the avatar controller by dead-reckoning. We discuss more
details of the avatar controller in §6.

5 MAPPING HETEROGENEOUS HOMES
Our first question is how to reproduce individual’s location and
orientation at another home in a contextually equivalent way. A
challenge is the spatial heterogeneity between the two homes, e.g.,
different floor plans and furniture arrangements. Obviously, re-
producing individual’s location and orientation as-is (i.e., same
coordinates) will not make sense. To find out human-perceived
equivalence about the avatar’s locations/orientations, we conducted
an empirical study with 20 participants, which is described below.

5.1 Functionally Equivalent Location and
Orientation

We collected an empirical reference dataset regarding the spatial
equivalence between heterogeneous floor plans. From public floor
plan repositories such as [4], we collected 20 pairs of heterogeneous

Figure 3: Human-labeled floor plan mapping

Figure 4: Heatmap showing participants’ agreement rates

floor plans with various room sizes and numbers of objects. We di-
vided each floor plan into one-square-meter grids. We recruited and
asked 20 volunteers to map grids in HomeA to semantically equiv-
alent ones in HomeB . Each pair is covered by randomly assigned
four or five participants. They were allowed to make one-to-many
mappings because a grid in a small home may have multiple se-
mantically equivalent grids in a larger home (see Figure 3). We
collected human-labeled ground truth data for 2921 grids. We then
conducted short interviews on how they mapped those grids.

We found that most participants started with grids close to in-
home objects, and then moved on to the rest of grids by imagining
the path from an object to another. Figure 4 shows a heatmap sam-
pled from our results set. It represents how much the participants
agree to the mapping results. This implies that the location equiva-
lence is correlated to the proximity to certain in-home objects.

The findings naturally led us to devise a rationale of functionally
equivalent location & orientation defined based on the in-home ob-
jects.WhenAlice is at home (HomeA), her context is likely related to
an in-home functional object that she is using, such as a refrigerator
or a dining table. Being close to the object and looking at the object
are strong indicators that Alice is likely interacting with the object,
which is consistent with the findings from [50]. For a given loca-
tion in HomeA, a functionally equivalent location in HomeB would
be roughly defined as the locations in HomeB related to the same
or similar purposes, or near such objects. Similarly, functionally
equivalent orientation would mean the orientation that functions
the same in two homes, e.g., facing the TV. In HomeMeld, we fo-
cus on making AliceAvatar have functionally equivalent location
and orientation of Alice as much as possible. The detailed method
is described in the succeeding subsections. Note that we include
the BobAvatar in HomeA (not to be confused with AliceAvatar in
HomeB ) as one of the functional objects in HomeA, because Alice
may be looking at or near Bob when they are together.
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Table 2: Description of the symbols used in Section 5.2
Symbol Description

a Location vector of Alice.
a′ Location vector of AliceAvatar .
ok Location vector of functional object k in HomeA .
o′k Location vector of functional object k in HomeB .

D
Distance vector from a to N functional objects.
i.e., D = (dk |dk = ∥a − ok ∥ , k = 1...N )

D′ Distance vector from a′ to N functional objects.
i.e., D′ = (d ′

k |d
′
k = ∥a′ − o′k ∥ , k = 1...N ).

r Size ratio between HomeA and HomeB .
ûk Unit vector of object k ’s orientation in HomeA .
û′k Unit vector of object k ’s orientation in HomeB .
θk Angular difference between ok and ûk .

5.2 Mapping Policy
From the findings above, we conclude that the most important
aspect of the mapping is to connect the functionally equivalent
locations. While it is straightforward to make one-on-one mappings
between the same class of functional objects, the question is how
to make mappings between arbitrary points in inter-object space.
Imagine Alice is moving from a sink to a table, which are next
to each other in HomeA but far apart in HomeB . The path is not
obvious, and possibly not even straight due to other objects.

The common idea underlying our mapping strategies is to use
the functional objects as anchors. For a given location in HomeA,
we find an equivalent location in HomeB by using the distances to
the same set of functional objects as the similarity metric. In this
light, we first built two preliminary mapping strategies; both take
a tuple of distances to multiple functional objects into account, e.g.,
(dcouch , dtv , dtable ). Based on real operations, we devised the third
mapping strategy considering only a single functional object.

1) Minimizing distance-ratio-differences is inspired from tri-
lateration. This strategy is to locate the robot to the point where
the ratios among the distances in the tuple are closest across homes.
From a reference point where Alice is at, a distance vector to the
functional objects is built, and the mapped point atHomeB is the lo-
cation minimizing the ratio of the vectors. Mathematically, the func-
tion takes Alice’s location vector a = (x ,y), the sets of functional
objects’ location vectors {o1, o2, ..., ok } and {o′1, o′2, ..., o′k } in
HomeA and HomeB , respectively, and the floor plan size ratio r
and outputs the location of AliceAvatar a′ = (x ′,y′). Define the
distance vectors of Alice and AliceAvatar as follows:

D = (∥a − o1∥ , ∥a − o2∥ , ..., ∥a − ok ∥) (1)
D′ = (



a′ − o′1


 , 

a′ − o′2



 , ..., 

a′ − o′k


) (2)

Then, the optimal avatar location is the location that minimizes
the n-th norm of the vector D − rD′. We chose n = 2 empirically.
We used fmincon solver to perform the optimization [3].

2) Maximizing cosine similarity is fundamentally similar to 1)
but different in the objective function. The output avatar location
is where it maximizes the cosine similarity between D and D′.

To see how those two strategies represent individual’s intuitive
floor plan translation, we developed a simulator. It displays two
home spaces HomeA and HomeB , and updates the mapped point
in HomeB as the user moves the reference point in HomeA. We
encouraged users to reproduce their frequent in-home activities

Table 3: Evaluation of mapping algorithms
Distance
Error

Distance-ratio
Differences

Cosine
Similarity

Object-oriented
Mapping

Near-object error 3.41 4.45 3.15
Far-object error 3.12 4.16 3.10

in the simulator (e.g., heading to the couch after stopping by the
refrigerator). Our major observation of both strategies was occa-
sional discontinuity of the mapped points’ trajectory in HomeB ,
given continuously moving the reference point in HomeA. Such
discontinuity might deliver a wrong context to Bob seeing the ro-
bot’s movement at HomeB . When the arrangements of functional
objects are very different across homes (e.g., two functional objects
are closely located in HomeA, while they are far away in HomeB ),
the discontinuity near the object happens more frequently.

In our design workshop in §3.2, participants agreed that the
equivalence of in-route path is relatively less significant compared
to the desination equivalence. To mitigate such discontinuities and
put emphasis on the near-object equivalence, we came up with a
new strategy considering the single nearest functional object.

3) Object-oriented mapping tries to relate the person to a single
functional object that she might be interacting with. Each object
is assumed to have an orientation unit vector ûk (e.g., direction
the TV is facing at). It partitions the given home space into several
regions each of which encloses a functional object (e.g., Voronoi
diagram [8]). Then a point in HomeA is mapped into a point in
HomeB by finding an equivalent relative polar coordinate of the
point with respect to the functional object being considered (e.g.,
scaling the distance from the functional object at the equivalent
angle with respect to the object’s ûk ). The location of Alice at
HomeA in the k-th region enclosing k-th object is represented as

a = ok + ∥a − ok ∥ · rotate(ûk ,θk ) (3)

The output location for AliceAvatar is given by

a′ = o′k + rk ∥a − ok ∥ · rotate(û′k ,θk ) (4)

where rk is the size ratio between the k-th regions in two homes.
Even though object-oriented mapping also turned out to have a

problem of discontinuity, those mostly appear at points far from
either functional object. This approach was shown to be effective
for generating continuous trajectory of the mapped points within
a region enclosing a functional object. However, when Alice in
HomeA moves from a functional object to another, we often observe
discontinuity in the AliceAvatar ’s trajectory in HomeB at a mid
point while it traverses from a functional object to another, i.e., at
the border between regions. We revisit this issue in §6.

We evaluated the mapping strategies in terms of average dis-
tance errors by comparing the algorithm-generated output with
human-labeled results (N = 2921) collected in §5.1. We divided
the entire home into near-object areas and far-object areas. For
each functional object, its near-object area is defined as a circular
region whose radius is half of the distance to the nearest other
functional object. We separately evaluated the average distance
errors for the grids within the near-object areas and those within
the far-object areas, which cover 50.1% and 49.9% of entire floor
plans, respectively. Table 3 shows the results; for near-object area,
the distance error of the object-oriented mapping was significantly
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lower than distance-ratio differences (t = −5.30,p < 0.01) and
cosine similarity (t = −13.67,p < 0.01). For far-object area, the
distance error of the object-oriented mapping was also significantly
lower than distance-ratio differences (t = −2.63,p = 0.01) and
cosine similarity (t = −11.75,p < 0.01). As a result, object-oriented
mapping exhibits the lowest distance errors in both areas. The
main reason why the near-object error is larger than the far-object
error in object-oriented mapping is that participants have differ-
ent object matching strategy when two floor plans have different
functional objects (discussed in §9.3) Accordingly, we adopted the
object-oriented mapping to implement the server modules.

5.3 Translating the Orientation
The orientation of AliceAvatar also needs to be translated. Like
the location mapping, it is not trivial to decide which direction
AliceAvatar should be facing, since it is hard to tell what Alice is
actually looking at along her line of sight. To the same extent of the
object-oriented mapping, we designed the orientation translation
in the following way. In HomeA, we draw a straight line from Alice
toward her orientation and find the nearest functional object from
the line. We then calculate the angle between the line and a new line
from Alice to the functional object. In HomeB , this angle is added
to the azimuth of the unit vector from AliceAvatar ’s translated
location towards the matched functional object. The resulting angle
is the translated orientation of AliceAvatar .

5.4 Object Matching in the Two Homes
Every home has different objects. Many of them may be common
objects, but some may not be. If we use common objects as func-
tional objects for mapping purposes, it may not always represent
a person’s equivalent location/orientation well due to the absence
of a unique object in either home. To handle such cases of objects
existing only at either home, we used fastText [13] to find the most
semantically similar object and map to it. The detailed process is
as follows. 1) The functional objects of a home are listed up. This
step may be replaced with automatic object recognition. 2) We map
common objects of those lists. For unmapped objects, we compute
cosine similarities between those objects’ word vectors, and map
each object to the most similar object above a certain threshold.

6 LETTING AVATARS BE SELF-MOBILE
Another challenge in developing HomeMeld is driving the avatar
to synchronize its location/orientation with those of the person in
real-time. The difficulty comes from the fact that the robot is much
slower than a human, especially in rotations and accelerations.

A naive way is taking a shortest-distance path, which will result
in obstacle-free connected straight lines. We name it rotate-and-
forward approach, as the avatar has to pre-rotate towards the next
waypoint or the destination (provided by the mapping policy in §5),
and move forward. This method is certainly slow and the human-
perception is even worse, because the avatar stays at the initial
location until it completes pre-rotation. This naive approach aggra-
vates the problem to the already-slow avatar robot.

We need a way to optimize the avatar’s movements to help it
keep up with the human. We devise two optimization techniques,
so called predictive path warping and navigation through hyperspace.

6.1 Predictive Path Warping
Synchronizing the arrival time at the destination is an important
issue to timely convey one’s possible update of activity upon arrival.
However, as mentioned in §5, the heterogeneous mapping might
cause the path for the AliceAvatar to be much longer than that of
Alice and worsen the speed problem of the robot.

We add destination prediction on top of our navigation algo-
rithm. Based on the information of Alice’s real-time location and
orientation, we attempt to predict Alice’s destination. If there is
only a single functional object in her moving direction, we can
almost safely say that is her destination. If we are confident enough,
we find the optimal path from the current AliceAvatar ’s position
to the final destination, rather than to the current functional equiv-
alent location of Alice. This approach will help the avatar arrive at
the destination faster because it navigates along the optimized path
to the destination rather than the tracing every single functionally
equivalent location of Alice, which may get long and crooked.

Confidence-aware SpeedAdaptation:What if there aremultiple
functional objects towards Alice’s moving direction? For example,
HomeA has a couch and a tea table next to it. But at HomeB those
objects are quite apart from each other. Suppose it initially predicts
the couch to be a slightly more likely destination than the tea table
at modest confidence, AliceAvatar moves to the equivalent object
in HomeB . However as Alice approaches closer, the prediction has
been updated to be the tea table. Now,AliceAvatar rapidly changes
its moving direction to the new destination in HomeB , which may
convey a wrong context to Bob and result in delayed arrival. To
avoid this, we find the functionally equivalent locations of those
two likely destinations in HomeB , and find a centroid in between.
HomeMeld drives AliceAvatar slowly towards the centroid while
the prediction confidence remains low. As soon as the confidence
becomes good enough, HomeMeld drives AliceAvatar towards the
destination at a higher speed. The reason why HomeMeld drives the
robot slowly at low confidence rather than holding it is to reproduce
the context that Alice is moving to somewhere right now.

6.2 Navigation through Hyperspace
Synchronizing the time of the departure is important to provide
an instant cue that the counterpart has started moving for a new
activity. It generally arouses the person’s attention and may help
initiate a new interaction. However, in the rotate-and-forward ap-
proach, the pre-rotation takes a while due to the robot’s limited
angular speed, delaying both departure and arrival times.

We highlight that an optimal path is a shortest-time path, not
necessarily a shortest-distance path as in the rotate-and-forward.
The shortest-time path is a sequence of connected lines and curves
of various curvature that are maneuverable within the robot’s me-
chanical limits, e.g., maximum acceleration and angular speed, etc.

We devised an algorithm finding a minimum-hop navigation
sequence in discretized hyperspace. For brevity, this algorithm is
hereinafter referred to as hyperspace. We build a 5-dimensional
space in which a point describes the robot’s state in terms of its
2-dimensional location (x , y), linear speed (v), orientation (θ ), and
angular speed (ω). We discretize each dimension to pre-load every
possible state and feasible transition in between. An edge connect-
ing two 5-D points means that the robot can move from one to the
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Figure 5: Data collection and augmentation with green screening, rotation transformation, and background synthesis

Figure 6: Optimal weight to combine A*- and greedy-search
other in a unit time under the robot’s mechanical limits. Say a robot
can accelerate up to 50 cm/s2 and the unit time is 1 second. For an
arbitrary point P at (x ,y,v , θ ,ω)=(0 cm, 0 cm, 0 cm/s, 0 rad, 0 rad/s),
P has edges to all points that the robot at P is reachable in a unit
time by proper acc/deceleration or rotation. For example, P has an
edge to (12.5 cm, 0 cm, 25 cm/s, 0 rad, 0 rad/s) as it is reachable in
one second by accelerating at 25 cm/s2 and keeping its orientation.

As an initial attempt, we adopted A* search [24] to hyperspace.
Unlike conventional A* search, we define the weight of an edge to
represent the time cost to travel along it, which is all 1 in hyperspace.
With given origin and destination states, the path obtained by
hyperspace describes the navigable shortest-time path. This path
itself embeds the required navigational controls along the path,
e.g., acceleration, breaking, or steering, because heading to the
next waypoint represents not only a spatial displacement but also
a change in navigational parameters.

A* search expands nodes based on f (n) = h(n) + д(n). h(n) de-
notes the estimated cost from the node n to the goal, and д(n)
denotes the cost so far until the node n. It finds the optimal path
which minimizes f (n), where n is the last node on the path. A*
search requires extensive computation because every node with the
same д(n) has to be analyzed every time, which is more serious in
5-D space. A* search is equivalent to greedy search if f (n) = h(n).
However, greedy search does not guarantee the global optimal path.
We adopted the notion of weighted A* [51] to combined those algo-
rithms as f (n) = h(n) +w ∗д(n), where 0 < w < 1, to find the path
to the goal while reducing the number of nodes to be computed. As
shown in Figure 6, we select 0.3 as an optimalw which minimizes
both average path distance and computation time.

Once the avatar starts moving according to the navigation con-
trols retrieved from the hyperspace-generated path, the path is

recalculated repeatedly using the newly received information. We
used 0.1 second for the recalculation interval, which equals to the
command update interval in the telepresence robot we used.

7 HUMAN DETECTION
7.1 Custom Trained CNN Model
Need for a custom trained model: We use a ceiling-mounted
180° camera in favor of obstruction-free human detection. Tracking
a person from a top view has several benefits than using an eye-level
view: 1) no blind area, and 2) tracking the person’s location without
knowing his height. However, detecting locations and orientations
of the person from a top view has not been frequently addressed in
existing models, e.g., pre-defined OpenCV classifiers or pre-trained
CNN models. This led us to create a custom dataset and model.

System Implementation: We implemented our model using a
CNN-based real-time object detection framework, YOLO [53] and
trained a custom model to detect a person from the top-view. We
define 8 classes indicating a person’s discretized orientations: north,
north-east, east, etc. This model returns a class of the person’s ori-
entation and the bounding box coordinates enclosing the detected
person. We compute the person’s location from the bounding box
coordinates. In a top view, a person’s feet are always the closest
part of the body to the center of camera. Using this property, we
infer the person’s ground-level location by finding an intersection
of the bounding box and a line from the center of FoV to the center
of a bounding box. We applied moving average in time domain of
person’s orientation to smooth the changes of discrete orientations.

7.2 Building Training Dataset
CNNs require a huge training dataset. To our best, we could not
find a public dataset of people seen from the top view. We also need
the orientations labeled on each picture, making the requirements
far less common. Thus we built our own dataset as below.

Green-screening and augmenting: Figure 5 shows our data col-
lection process. Fortunately, from the top view, a person’s appear-
ance is symmetric with respect to the center of FoV. We benefit
from this property and a green-screening technique. A participant
moves along the 1-D straight line on the green fabric with his orien-
tations labeled automatically using a smartphone’s gyroscope sen-
sor for ground truth. We screen participants by a green-screening
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Figure 7: Laboratory experimental setting
technique. We then augment our dataset by rotating screened par-
ticipants around the center of FoV as a pivot point. To balance
our training dataset for each orientation class, we rotated screen
participants with random angles but at equal frequencies per class.

Robustness and Generality: Artificially enlarging the dataset is
a common method to reduce overfitting [16, 35]. To attain suffi-
cient robustness and generality, we need numerous data samples
of a large variety in terms of people, locations/orientations, and
floor plans. We superpose our screened participants with various
background images. We collected 85K original images from 14 par-
ticipants who often changed the clothes. Then we finally generated
665.7K training images on 20 different background images with
different furniture arrangements with arbitrary lighting conditions.

8 EVALUATION
In this section, we evaluate HomeMeld with respect to 1) system
performance in controlled environments and 2) potential usefulness
from small-scale exploratory deployments.

8.1 System Performance Evaluation
Experimental setup:We prototyped HomeMeld using commer-
cial telepresence robots, Double 2 [2]. Its driving hardware is a
bi-wheeled self-stabilizing base, on which a 9.7-inch iPad Pro is
mounted in an inverted pendulum style. The iPad and the driving
hardware is connected via Bluetooth. While a common way to pilot
Double 2 is using its standard piloting interfaces on web and mobile
platforms, it provides an iOS SDK to enable third-party piloting
applications. We developed a custom pilot software to automati-
cally drive Double 2 upon server-side commands and local dead-
reckoning. The iOS SDK provides real-time encoder values individ-
ually from both wheels, allowing short-distance dead-reckoning.

The server modules are running on our GPU cluster (NVIDIA
TITAN X). We mounted Ricoh Theta S cameras [6] on the ceiling,
which are connected to a laptop and to the server module.

We conducted extensive measurements to evaluate HomeMeld’s
human recognition and avatar navigation performance. To repre-
sent a casual living space, we set up two experimental rooms and
placed four kinds of common furniture, i.e., a refrigerator, a working
desk, a couch, and a television. Figure 7 illustrates structures of our
rooms. We then defined four types of casual in-home movements:
normal, paused, serial, and turned movement (see Figure 8).

To compose the workload, we recruited 4 graduate students in
South Korea (age: 22–30). They were asked to perform every move-
ment type once at a random starting point and destination. They
repeated the task with various walking speeds, clothes, and rooms.
At the same time, we collected a top-view video stream as well as
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Figure 8: Four types of casual in-home movements: (a) Nor-
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the participants’ body orientation by using the 180° camera and a
smartphone-mounted waistband, respectively. After the collection,
we manually labeled their locations for ground truth. We collected
a total of 32 movement traces with 2,863 labeled video frames.

Human recognition accuracy:We evaluated the accuracy of the
recognition model with respect to the person’s location and orienta-
tion. We used three metrics: 1) detection recall, 2) location accuracy,
and 3) orientation accuracy. The detection recall measures whether
a system detects a person’s presence, regardless of location and
orientation. It is a prerequisite for the system to continuously re-
spond to the person’s movements at minimal latency. The location
accuracy is measured in Intersection over Union (IoU, %) between
the recognized region and the actual region. For the orientation
accuracy, we used the 8 discrete classes, then used two hit ratio
metrics (%): 1) exact hit returns ‘hit’ only when the recognized ori-
entation class matches the actual one, 2) nearest-3 hit returns ‘hit’
when the recognized class falls in the range of [counterclockwise
nearest class, ground-truth class, clockwise nearest class].

Overall, the model exhibits 86.1% recall, denoting that our system
is practical enough to track a person’s presence in real-time. The
worst-case, i.e., the longest number of consecutive frames missing
detection, was 11 frames, indicating a little delay of 0.9 seconds
at 12 fps on average. Our model precisely recognized the person’s
location and orientation. The average accuracy of location detection
was 85.9% and the orientation detection was 69.2% and 89.2% for
exact hit and nearest-3 hit, respectively. Figure 9 shows the details.

Latency in navigating avatars: We measured the performance
of HomeMeld in synchronizing the location/orientation of a person
with those of the avatar. Latency of the CNN model was 72ms on
our server hardware, which is the time taken to find the location
and orientation of the user from a video frame. To measure the
prominent human-perceived latency, we took two metrics, depar-
ture latency and arrival latency. Departure latency is the delay until
an avatar starts moving after a person departed. Similarly, arrival
latency is defined as the delay at arrival. To evaluate the effect of the
navigation through hyperspace and with predictive path warping,
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Table 4: Evaluation of departure latency (sec)
Navigation Strategy Normal Pause Serial Turned

Naive 2.74 2.58 2.49 2.92
Hyperspace-only 0.59 0.55 0.43 0.44
Path-warping-only 2.62 2.78 2.19 3.08

HomeMeld 0.77 0.81 0.64 0.66

Table 5: Evaluation of arrival latency (sec)
Navigation Strategy Normal Pause Serial Turned

Naive 8.67 8.03 11.57 9.14
Hyperspace-only 7.53 7.38 8.12 7.79
Path-warping-only 11.10 13.44 11.43 11.46

HomeMeld 4.87 4.16 6.33 6.11

we compared all four combinations: naive which navigates through
rotate-and-forward without predictive path warping, hyperspace-
only, path-warping-only, and HomeMeld’s strategy that uses both
techniques. We used the recorded walking traces in §8.1 as the
input and observed the corresponding avatar’s movement.

Overall, HomeMeld outperformed the other strategies in both
latency metrics as shown in Table 4 and 5. Specifically, it was more
than five times faster than naive and path-warping-only in arrival,
showing that hyperspace achieves significantly time-efficient navi-
gation. Although the hyperspace-only performed the best departure
latency, the difference between hyperspace-only and HomeMeld is
almost negligible, i.e., only 0.2 seconds. HomeMeld demonstrated
much shorter arrival latency by more than a second.

One may raise concerns that the arrival latency of HomeMeld,
an average of 5.37 seconds, is too high. However, our observations
reveal that much of the latency is due to the final deceleration to
precisely stop at the destination. We see that, when decelerating,
the location is already close enough to be a meaningful cue to
a human. We also measured the ‘approach latency’ between the
person’s arrival and the avatar approaching within 30 cm from the
object. It turned out to be an average latency of 3.33 seconds.

8.2 Small-scale Deployment in the Lab-setting
We conducted a small-scale deployment to understand the feasibil-
ity and usefulness of HomeMeld in a real environment. It consisted
of three steps. First, we briefly described HomeMeld to the partic-
ipants. They signed an informed consent form approved by the
university IRB. They watched and controlled our robotic avatar for
about 10 minutes to mitigate novelty effects. Second, we requested
participating couples to naturally interact with different interaction
methods, i.e., video chat, telepresence robot, and HomeMeld, for
15 minutes each in a random order. After each method, they were
asked to fill in a questionnaire that measures the relative level of
social-presence [11], comprising 38 questions; to list a few: ‘I often
felt as if I was all alone’, ‘My behavior was in direct response to the
other’s behavior’. To encourage their interaction, we provided a
list of 14 casual in-home activities such as ‘look at your partner’
and ‘solve a cross-word puzzle’. Third, we conducted a 30-min semi-
structured interview to obtain their feedback. The interview themes
included perception of each other’s presence, comparison with ex-
isting tools, and naturalness of avatars’ positioning and navigation.
Key questions included ‘Could you imagine your partner’s activity? ’,
‘How different was the topic of the conversation? ’, and so on.

Participants: We recruited couples who have lived apart invol-
untarily for at least one month, from a public research university
in South Korea. In total, we recruited eight couples. Six were un-
married couples (C1-C6) and two were married (C7-C8). Their geo-
graphic origins included South Korea, India, and Kazakhstan. They
have experienced an average distant period of 15 months (min: 1,
max: 60). Each participant was rewarded a $30 value gift certificate.

Results: The results show that the average social-presence scores
in HomeMeld (M = 5.97, SD = 0.89) was higher than those of
the video chat (M = 4.33, SD = 0.90) and the telepresence robot
(M = 5.53, SD = 0.25). According to the ANOVA test, participants
experienced richer social-presence from HomeMeld than video chat
(F = 3.52,p < 0.01) and telepresence robot (F = 9.05,p < 0.01).
Note that average social-presence score reported in the original
work [11] was 5.55 for face-to-face interaction and 5.39 for telecon-
ferencing, although their results are not directly comparable to us.
It shows the potential limitation of our evaluation that the novelty
effect to the robots might not be clearly removed and contributed
higher scores in telepresence robots and our system.

Overall, the participants were satisfied with using HomeMeld
and stated its feasibility and usefulness. All but C6 expressed that
the system provided a novel interaction medium while they kept
perceiving each other’s presence. Interestingly, although the par-
ticipants knew that the avatar in the room was not the real coun-
terpart, when they saw its existence, watched its movement, and
heard voices of the counterpart from it, they could imagine that
the counterpart was living with them. They added that such co-
presence further broadened the spectrum of interaction themes like
their current behavior and locations. Meanwhile, C6 complained
that they couldn’t find each other’s face immediately from the front
screen of the avatar, which sometimes confused them.

We also observed that most participants liked that they could
keep a conversation with little attention which was impossible in
voice or video calls. However, C2 explained that they were already
attention-free without HomeMeld as they used to have phone calls
in speakerphone mode. In terms of the robot’s tangibility and mobil-
ity, two expressed their concerns about collision while they agreed
that such tangibility provided fresh experiences. To further look into
it, we asked their opinions about a concept of holographic avatars.
Half the participants answered that it would be weird, mainly be-
cause they could pass through the counterpart and it would feel like
they were facing a ghost. Meanwhile, C3 and C6 were not satisfied
with the robot’s positioning and navigation behavior. They suffered
from the robots’ long navigation latency mainly caused by their
frequent location changes.

The participants suggested several features to improve Home-
Meld, e.g., adjusting the robot’s height to the counterpart’s, reflect-
ing head motions, and a ‘private’ mode—turning off their avatars
when they do something privately. We leave them as future work.

8.3 Exploratory Probe in Real Living Spaces
As an exemplary case study complementing the lab-setting experi-
ment, we conducted an exploratory user study in the wild to collect
the users’ experiences with HomeMeld in their real living spaces
(please see Figure 10). We recruited two adult sisters (S1 and S2),
aged 30 and 28, who had lived together and heavily relied on each
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Figure 10: Exploratory user study in real living spaces

other under a single parent, but recently separated due to their jobs.
We deployed HomeMeld at each home for an hour.

The study was a valuable preview arousing a few facets of user
experiences and technical demands likely in real life with Home-
Meld with no usage scenario given. We discuss selected findings.

Watching TV together:During the study, S1 and S2 turned on the
same TV show for a while. S1 complained that the sound coming
from the TV at S2’s home through the avatar was out of sync with
her own TV sound. Since watching TV together is very common
for people living together, we believe it is worth resolving the issue.
As location of the TV is likely known to HomeMeld, the robot
may adopt spatially selective sound capture techniques [19] and
suppress the TV sound, while letting the user’s voice pass through.

Holistic smart home sharing: S1 responded that, in the past,
when S2 was already watching a TV show, she used to sit next to
her sister and watched it together. S1 suggested that automatically
turning on the same TV channel as soon as S2 starts watching the
TV would be great to have seamless watching-together experiences.
S1 added that synchronizing lighting systems, watering sound, and
door opening of both homeswould be also good for a strong sense of
living together. For example, turning off the light on the dining area
at HomeA is automatically mirrored at the light at the equivalent
space of HomeB . Clark et al. [17] studied synchronizing audio and
lighting between two homes in a room-level. Incorporating this
notion with HomeMeld would be a great addition.

Pre-ready feature: Our deployment commenced with the partic-
ipants ready in their respective rooms and the robots staying at
initial locations. S2 suggested that it would be even more com-
pelling if S2 sees her sister’s avatar already moving around when
S2 enters her home after work, rather than seeing the robot initial-
izing in response to her arrival. S2 said that she used to come home
later than S1 when they were living together. It reminds her of past
times that S1 welcomed her entering home. Initializing HomeMeld
a few minutes before the user’s arrival would be straightforward
by geofencing the user’s location in a close proximity to home.

Tangible avatars:We observed a few times that a robot bumped
into a participant, mainly upon the robot’s delayed movement not
being able to avoid the participant’s newest location. Interestingly,
S1 responded that the collision was not entirely bad; avoiding the
incoming robot was inconvenient, but at the same time, occasional
bumping made her feel a strong sense of her sister’s real presence.

9 DISCUSSION
9.1 Design Considerations
Presence vs. Privacy: A few participants discussed privacy con-
cerns, as HomeMeld lets a person infer the other person’s in-home
activities at all times. However, other participants countered that; if
they were living together, they are naturally aware of each other’s
activity and would not consider it a privacy issue. They pointed
out that enjoying pseudo living-together experiences means that
they should adapt their notion of privacy to what they would have
if they live together. For those who want a trade off in the middle,
HomeMeld would be set to operate only in a shared living area,
such as the living room or the dining room which most families
do not consider private when they live together. The other spaces,
such as bedrooms or restrooms, may be set off limits to HomeMeld.
Design alternatives: We envisioned a robotic avatar which is
moving, looking, and acting exactly in the same way as the family
member. Another option might be a follow-me avatar always facing
the local user; this would allow the user to always see the other
family member. However, many participants pointed out that being
watched all the time may feel unnatural and make them nervous.
A follow-me mode may be an addition in future work.
Better destinationprediction:Weproposed predictive pathwarp-
ing in §6.1. Considering an individual’s location history would
increase the prediction accuracy. A possible solution may be incor-
porating a time-variant machine learning algorithm (e.g., HMM)
into our current destination prediction.

9.2 How HomeMeld Scales
Towards an entire house: In this paper, we demonstrated use
cases of HomeMeld in select areas of a house, e.g., living room and
kitchen. We chose such areas as our primarily deployment space to
effectively convey the core concept of HomeMeld, because those
are typical shared areas where most interactions between family
members likely happen. Eventually, HomeMeld should be able to
cover an entire house. To do so, a possible extension would be a two-
tier hierarchical mapping approach that begins with room-level
mappings and then proceeds with object-level mappings. Upon
the user moving to another room, a room-level mapping finds
an equivalent room in which the avatar should be located. The
following object-level mapping finds a precise in-room location
based on functional objects within. HomeMeld could extend with
multiple cameras to cover a larger home or rooms across the walls.
Beyond two homes and two people: While our current imple-
mentation assumes two homes with a single person located at each,
we can extend the principles of HomeMeld towards more than two
homes and/or more than a single person at a place, as long as the
equal number of avatars are affordable. Identifying each avatar in
the same place is trivial with different markers. But identifying each
person in the same place may pose a challenge. We may extend the
model to identify a person. Alternatively, we may leverage physical
differences in household members such as height [25]; an individ-
ual’s height may be opportunistically estimated in our setting by
trigonometry on the slanted views when she is walking around
peripheral areas. Once identified, HomeMeld would keep tracking
her using inter-frame locality or feature matching [38, 55].
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9.3 Real-world Deployment
One-on-none, one-on-many correspondence: For a dishwasher
in Home A, suppose no matched object exists in Home B’s kitchen,
and even an object of a semantically close name is not found. Then
HomeMeld may find one that belongs to the same group in the
lexical hierarchy [40].There could be more than one matched object
in Home B, e.g., Home A has a single couch in the living room
whereas Home B has two. A naive method would designate a single
default couch. Alternatively, our policy may dynamically choose ei-
ther couch depending on the current avatar location which we treat
as a functional object as well; one couch may give an equivalent
location that exhibits more similar person-avatar proximity.

Obstacle avoidance: Obstacle avoidance is an important feature
for real-world deployment, however, it was outside of the scope of
this paper. We focused on how the notion of functional equivalence
would facilitate natural interaction between users residing in differ-
ent homes. For obstacles that mostly remain stationary, a possible
approach is to register such an obstacle’s location and shape. By
removing the edges traversing over such obstacles from our hy-
perspace algorithm, it will naturally generate a shortest-time path
that circumvents the obstacles. Another way is to put additional
sensors on the robot and apply sensor-based obstacle avoidance
techniques [12, 15, 21], and even utilize deep learning techniques
on those sensor data [59, 60]. Determining dangerous area (e.g.,
wet areas, stairs, pool) may be done by image segmentation [10].

Smaller face in the small screen: The face in the screen is seen
smaller than the screen when the person is far from the avatar’s
front camera. One possible solution is to magnify the face when
the person is looking at the avatar by a face recognition technique.

Battery life: In the deployment at real homes, we observed that S1
was stationary for about 75% of the study duration. We measured
battery consumption rate of the robot to estimate how long the
robot could seamlessly operate. The battery consumption rate was
4.26%/hour and 7.05% when the robot remains stationary and keeps
moving, respectively. We derive that HomeMeld could operate for
20.2 hours for a user of similar moving patterns to S1, and for 14.2
hours for an extreme user who is always moving around. Assuming
daily charging while a user is sleeping or out for work, HomeMeld
would be practical for daily use in terms of battery life.

Living space with limited network bandwidth: A family mem-
ber might be assigned in a rural area, e.g., at an observatory or
a remote construction site. Such living space may have network
bandwidth not as abundant as a home in a developed area does. If
the server modules of HomeMeld reside in cloud, we estimate its
inbound traffic to be about 559 kB/s mostly due to the live camera
feed. The outbound traffic is negligible, i.e., 1095 bytes/s for the
command messages to the avatar. Running the human/avatar de-
tectors locally may save much of the inbound traffic, as only the
respective coordinates are sent to the cloud. Currently, a modest
desktop with a mainstream GPU could execute the CNN model for
real-time human detection. A mobile device may suffice in the near
future, powered by recent advances in CNN frameworks optimized
for mobile platforms [26, 27]. We envision more people with limited
network or computing resources may benefit from HomeMeld.

10 RELATEDWORK
Lack of situation awareness in remote interaction: In spite of
rapid advance in communication technology, Walther et al. pointed
out that the lack of nonverbal cues is the key weakness of remote
interaction [61]. The lack of non-verbal cues decreases opportuni-
ties to understand a remote other’s situation [23]. Brave et al. tried
to overcome this issue with tangible interfaces, which create the
illusion that distant users are interacting with shared physical ob-
jects [14]. Yarosh et al. designed a remote parent-child interaction
by augmenting video chatting with a camera-projector system [64].

Natural remote spontaneous interaction:While there have been
many attempts to investigate remote spontaneous interaction, most
of them focus on implying simplified other-related information to
the smartphone alert [57], text message [58], video chatting [20, 42,
52], household object [43], and public social agents [56]. Represent-
ing the remote other’s contexts, including real-time behavior, to
facilitate natural spontaneous interaction remains underexplored.

Indoor localization: Within a wide range of indoor positioning
techniques, passive wireless indoor localization has the advan-
tage of freeing people from wearable devices. Such localization
techniques have employed WiFi base stations [65], visible light
arrays [37], and a custom FMCW antenna array [7]. They exhibit
various trade-offs among localization accuracy, gesture support,
and complexity of infrastructure setup. While our approach us-
ing CNN-based visual recognition of user location and orienta-
tion provides reasonable accuracy with relatively simple setup, the
aforementioned techniques may complement HomeMeld in further
extensions that capture user contexts at higher fidelity.

11 CONCLUSION
We proposed HomeMeld, a zero-hassle self-mobile robotic sys-
tem serving as a co-present avatar to create a persistent illusion
of living together. We explored the practices and challenges for
work-separated families to keep their bonds. We developed models
and a system to ensure synchronous co-presence experiences with
human-perceived spatial equivalence between heterogeneous liv-
ing spaces. HomeMeld has been evaluated through both controlled
experiments and deployments to real participants under work-
separation. We envision further emergence of versatile, higher-
fidelity co-presence services, and HomeMeld would serve as an
early catalyst therein.
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